Package: VDPO 0.1.0
Pavel Hernandez
VDPO: Working with and Analyzing Functional Data of Varying Lengths
Comprehensive set of tools for analyzing and manipulating functional data with non-uniform lengths. This package addresses two common scenarios in functional data analysis: Variable Domain Data, where the observation domain differs across samples, and Partially Observed Data, where observations are incomplete over the domain of interest. 'VDPO' enhances the flexibility and applicability of functional data analysis in 'R'. See Amaro et al. (2024) <doi:10.48550/arXiv.2401.05839>.
Authors:
VDPO_0.1.0.tar.gz
VDPO_0.1.0.zip(r-4.5)VDPO_0.1.0.zip(r-4.4)VDPO_0.1.0.zip(r-4.3)
VDPO_0.1.0.tgz(r-4.4-any)VDPO_0.1.0.tgz(r-4.3-any)
VDPO_0.1.0.tar.gz(r-4.5-noble)VDPO_0.1.0.tar.gz(r-4.4-noble)
VDPO_0.1.0.tgz(r-4.4-emscripten)VDPO_0.1.0.tgz(r-4.3-emscripten)
VDPO.pdf |VDPO.html✨
VDPO/json (API)
NEWS
# Install 'VDPO' in R: |
install.packages('VDPO', repos = c('https://pavel-hernadez-amaro.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/pavel-hernadez-amaro/vdpo/issues
Last updated 2 days agofrom:8cf58a3aab. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 19 2024 |
R-4.5-win | OK | Nov 19 2024 |
R-4.5-linux | OK | Nov 19 2024 |
R-4.4-win | OK | Nov 19 2024 |
R-4.4-mac | OK | Nov 19 2024 |
R-4.3-win | OK | Nov 19 2024 |
R-4.3-mac | OK | Nov 19 2024 |
Exports:add_griddata_generator_vdffpoffpo_2dffvdplot_beta_with_civd_fit
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Grid adder for dataframes | add_grid |
Data generator function for the variable domain case | data_generator_vd |
Defining partially observed functional data terms in VDPO formulae | ffpo |
Defining partially observed bidimensional functional data terms in VDPO formulae | ffpo_2d |
Defining variable domain functional data terms in vd_fit formulae | ffvd |
Generate 1D functional data for simulation studies | generate_1d_po_functional_data |
Generate 2D functional data for simulation studies | generate_2d_po_functional_data |
Plot Beta Estimates with Confidence Intervals | plot_beta_with_ci |
Estimation of the generalized additive functional regression models for variable domain functional data | vd_fit |